PLAN FRAGMENT 0(F05)
Output Exprs:84: cast | 85: expr | 86: payment_amount | 123: user_id | 124: shop_id | 125: province_code | 126: province_name | 127: city_code | 128: city_name
Input Partition: UNPARTITIONED
RESULT SINK
13:EXCHANGE
cardinality: 702347
PLAN FRAGMENT 1(F00)
Input Partition: RANDOM
OutPut Partition: UNPARTITIONED
OutPut Exchange Id: 13
12:Project
|  output columns:
|  84 <-> [84: cast, VARCHAR(65533), true]
|  85 <-> [85: expr, TINYINT, false]
|  86 <-> [86: payment_amount, INT, true]
|  123 <-> [123: user_id, LARGEINT, false]
|  124 <-> [124: shop_id, LARGEINT, true]
|  125 <-> [125: province_code, INT, true]
|  126 <-> [126: province_name, VARCHAR, true]
|  127 <-> [127: city_code, INT, true]
|  128 <-> [128: city_name, VARCHAR, true]
|  cardinality: 702347
|  column statistics:
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
|  * payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * user_id–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
|  * shop_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * province_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * province_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * city_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * city_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|
11:HASH JOIN
|  join op: INNER JOIN (BROADCAST)
|  equal join conjunct: [130: cast, DOUBLE, true] = [129: cast, DOUBLE, true]
|  build runtime filters:
|  - filter_id = 0, build_expr = (129: cast), remote = false
|  cardinality: 702347
|  column statistics:
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
|  * payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * user_id–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
|  * shop_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * province_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * province_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * city_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * city_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * cast–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
|
|----10:EXCHANGE
|       cardinality: 13217
|
1:Project
|  output columns:
|  123 <-> [123: user_id, LARGEINT, false]
|  124 <-> [124: shop_id, LARGEINT, true]
|  125 <-> [125: province_code, INT, true]
|  126 <-> [126: province_name, VARCHAR, true]
|  127 <-> [127: city_code, INT, true]
|  128 <-> [128: city_name, VARCHAR, true]
|  130 <-> cast([123: user_id, LARGEINT, false] as DOUBLE)
|  cardinality: 702347
|  column statistics:
|  * user_id–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
|  * shop_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * province_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * province_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * city_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * city_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * cast–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
|
0:OlapScanNode
table: dwd_yd_shop_user_info, rollup: dwd_yd_shop_user_info
preAggregation: on
partitionsRatio=1/1, tabletsRatio=6/6
tabletList=72611,72615,72619,72623,72627,72631
actualRows=702347, avgRowSize=37.0
cardinality: 702347
probe runtime filters:
- filter_id = 0, probe_expr = (CAST(123: user_id AS DOUBLE))
column statistics:
* user_id–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
* shop_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* province_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* province_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* city_code–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* city_name–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* cast–>[9.7859750496651674E17, 1.5381502503702487E18, 0.0, 16.0, 583205.0] ESTIMATE
PLAN FRAGMENT 2(F01)
Input Partition: RANDOM
OutPut Partition: UNPARTITIONED
OutPut Exchange Id: 10
9:Project
|  output columns:
|  84 <-> [84: cast, VARCHAR(65533), true]
|  85 <-> [85: expr, TINYINT, false]
|  86 <-> [86: payment_amount, INT, true]
|  129 <-> cast([84: cast, VARCHAR(65533), true] as DOUBLE)
|  cardinality: 13217
|  column statistics:
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
|  * payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|
2:UNION
|  child exprs:
|      [82, VARCHAR(65533), true] | [83, TINYINT, false] | [11, INT, true]
|      [121, VARCHAR, true] | [122, TINYINT, false] | [95, INT, true]
|  pass-through-operands: all
|  cardinality: 13217
|  column statistics:
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
|  * payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|
|----8:EXCHANGE
|       cardinality: 360
|
5:EXCHANGE
cardinality: 12857
PLAN FRAGMENT 3(F03)
Input Partition: RANDOM
OutPut Partition: RANDOM
OutPut Exchange Id: 08
7:Project
|  output columns:
|  95 <-> [95: payment_amount, INT, true]
|  121 <-> [121: user_id, VARCHAR, true]
|  122 <-> 1
|  cardinality: 360
|  column statistics:
|  * payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * user_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
|
6:OlapScanNode
table: ods_sub_order, rollup: ods_sub_order
preAggregation: off. Reason: Has can not pre-aggregation Join
Predicates: [112: created_time, LARGEINT, true] >= cast(cast(unix_timestamp[(cast(‘2022-05-16 00:00:00.000’ as DATETIME)); args: DATETIME; result: INT; args nullable: true; result nullable: true] as BIGINT) * 1000 as LARGEINT), [112: created_time, LARGEINT, true] <= cast(cast(unix_timestamp[(cast(‘2022-05-16 23:59:59.999’ as DATETIME)); args: DATETIME; result: INT; args nullable: true; result nullable: true] as BIGINT) * 1000 as LARGEINT), [100: pay_status, TINYINT, false] = 2
partitionsRatio=1/1, tabletsRatio=1/1
tabletList=11949
actualRows=2879, avgRowSize=5.0
cardinality: 360
column statistics:
* payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* pay_status–>[2.0, 2.0, 0.0, 1.0, 1.0] UNKNOWN
* created_time–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* user_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
PLAN FRAGMENT 4(F02)
Input Partition: RANDOM
OutPut Partition: RANDOM
OutPut Exchange Id: 05
4:Project
|  output columns:
|  11 <-> [11: payment_amount, INT, true]
|  82 <-> cast([2: buyer_id, LARGEINT, true] as VARCHAR(65533))
|  83 <-> 1
|  cardinality: 12857
|  column statistics:
|  * payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
|  * expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE
|
3:OlapScanNode
table: ods_sub_order, rollup: ods_sub_order
preAggregation: on
Predicates: [37: created_time, LARGEINT, true] >= cast(cast(unix_timestamp[(cast(‘2022-05-16 00:00:00.000’ as DATETIME)); args: DATETIME; result: INT; args nullable: true; result nullable: true] as BIGINT) * 1000 as LARGEINT), [37: created_time, LARGEINT, true] <= cast(cast(unix_timestamp[(cast(‘2022-05-16 23:59:59.999’ as DATETIME)); args: DATETIME; result: INT; args nullable: true; result nullable: true] as BIGINT) * 1000 as LARGEINT), [21: pay_status, TINYINT, false] = 2
partitionsRatio=1/1, tabletsRatio=1/1
tabletList=11764
actualRows=102855, avgRowSize=6.0
cardinality: 12857
column statistics:
* buyer_id–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* payment_amount–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* pay_status–>[2.0, 2.0, 0.0, 1.0, 1.0] UNKNOWN
* created_time–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* cast–>[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN
* expr–>[1.0, 1.0, 0.0, 1.0, 1.0] ESTIMATE